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A certain class of problems with unknown boundaries are considered herein in connection 

with the problem, posed by Barenblatt and Ishlinskii [l], on the impact of a viscoplastic 
rod on a rigfd obstacle, which was the fundamental model for typification of this class. The 
presence of singularities in the unknown functions (the desired solution of the heat conduc- 
tion equation has a discontinuous point, the derivatives of the unknown boundary are un- 
bounded), and the nonmonotonous behavior of the unknown boundary are characteristic of 
the considered problems (+). 

A theorem on the uniqueness of the solution of these problems is established, functional 
equations are derived for the unknown boundaries (equivalent to an initiai value problem), 
and some properties of the solution are discussed (in more detail in the case of the above- 
mentioned problem of impact of a rod). 

l. Formulation of the problems. It is required to find a continupus function 

h(t), h(O) = 0, n(t) > 0 for t f (0, T) In some segment 0 ,( t ,< T, and a bounded solution of 

the heat conduction equation 

Ut = %cx (1.1) 
in tbe domain 

$2 = {(t, x) : 0 < x < h (t), 0 <: t f 7’) 
which is continuous in CJ\ (0,O) t ogether with the derivative U, (t, 2) and satisfies 
the conditions 

=I *o = f (Q a, / x=f+f = 0, TJ t r=h(q = A (h) - gh tt> (1.3 
where f(t) is a continuous function for t 3 0 and A 
of continuously differentiable functions Ctl’O, ~1. 

is some operator with values in the space 
F rom the assumption on the smoothness 

of the function g(z), in some cases the smoothness of tbe function h(t) naturally results(**): 

for example, if g(t) = F(h(t)), w h ere F(a) is a smooth monotone function; moreover, some 
constraints on h(t) may derive from the very formulation of the problem (in particular, from 
physical considerations; for example, in the case of the problem of impact of a rod A(t) is 
less than the rod length). Hence, the operator A is generally defined only on some subset 
of continuous functions which we shall designate the set of admissible boundaries, and 
whose selection is essential in the formulation of the problem. 

Let T* be the upper bound of those T for which a unique solution of the considered prob- 

lem exists; if T+ < + M (for example, h(T) = 0). it is then said that the solution exists, 

locally, in the small. 

* 

** 

Problems with monotonous unknown boundaries, having regular solutions, are investi- 
gated in 12 and 31, say. 
We shall not henceforth stress the dependence of the function g(t) on A(t) in those cases 
where this may certainly not lead to misunderstanding. 
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2. Representation of the solution u(t, x) which isolates its princi- 
pie singularity. When j(O)+ g(O), the function u(t, z) is known to be discontinuous at 
the point (0, 0). Hence, let us first establish a representation for the function u(t, X) which 
is not connected with the specific form of the operator A but which isolates its discontin- 

uous part. 

Theorem 2.1. Let h(t), u(t, x1 form a possible solution of the problem (1.1). (1.2). 

Then 

c 0 

UJ (5) = - .&* exp (- 62) & 
s 

i 
Pro o f. Let us predetermine the function u(t, x) in the domain {(G 2) : h (t) < z < M, 

0 < t \< T} by means of the formula u(t, x) s g(t). The function u(t, x) obtained on the 
half-axis n ((t, 5) : 0 < 2 < -+ C-D, 0 < t < T} is continuous in 0, (0,O) together with 

its derivative uX (t, z) and is a bounded solution of the problem: 

= F (t, r) 3 
( 

0 
Ut - %cX 

for r<h(t) 

g’ (t) for z> h(t) 
(2.21 

~ko= f (if* u It+) = B W ru1 I*h(t) = [=,I l&(t) = 0 (2.3) 

The solution of such a problem may be expressed in terms of the Green’s function 

2 I/n (t-r) exp [ ( 

by the foIlowing formula(*): 
+= 

u(t, a) = 5 g (0) G (2, 5, t, 0) 4 + i G< (r, 0, t. z) f W & + 

0 0 

t +- 

+ s 1 G (5, 4, t, r) F (z, 4) dEdr 
0 0 

from which we obtain the representation (2.1) by elementary manipulation. 

Corollary 2.1. The function 

(2.4) 

u(t, +-g(O)@ ($+f(O)(~-Q&j) 
is continuous in a, where (the identity f (.t.) = f (T) - f (0) f f (0)) is applied to 

transform the second member of the formula): 

from which for t -+ 0 

*) The proof of (2.4) may be obtained by direct verification that the function u(t, x) in 
(2.4) (or in (2.1)) yields the solution of the problem (2.21, (2.3), and by application of 
the uniqueness theorem for the solution of the problem (2.2). (2.3) in the class of boun- 
ded functions. 
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Corollary 2.2. Ifg(O1 -ffO)fO, then 

(2.5) 

which follows from the second estimate of corollary 2.1. 

Corollary 2.3. (Maximum principle). The inequalities 

are valid for the function u(t, xl fit is sufficient to apply the customary maximum principle 
for t ) 6 > 0, and to let 8 tend to zero). 

Co roll ary 2.4. For j(t) 5 const = f(O) the problem (1.11, (1.21 has meaning only under 
compliance with the condition 

g (0) - f (0) + 0 

Indeed, we otherwise obtain from (2.1) that the function u(t, X) is continuous at the ori- 
gin, and therefore, equals the constant f(O) for any boundary z = h (~1. 

Since we are especially interested in the case of the discontinuous function aft, xl, and 

the case f&f E 0 fin the problem of rod impact), then we shall henceforth consider this con- 

dition to be satisfied everywhere. 

3. Uniqueness tht?Orem. Let us assume that the operator A in the set of admissi- 
ble boundaries has the following properties. 

1) The value of A (h)lt,, = g (0) is independent of the selection of h(t). 

21 If h, (te) > h, (to), then a point 6.” < te exists such that h, (t”) = hz (t*) 

and for g”” (t) s .4 (hi) (i = 1, 2), the inequality 

g’11 (t’) - g”l (to) > gh’ (t’) - ghr (to) (3.1) 
is valid. 

For example, if A (h) e I; (h(t)), where F (01 is a smooth decreasing function, then the 

property (2) is satisfied for any to with t* = 0. As will be shown below, the problem of im- 

pact of a viscoplastic rod yields another example of such an operator. 
Wth respect to the smooth function f(t) we assume that(*) 

f (0) < g 6% f’ (f) < 0 (3.2) 
Let us note that in the case of the smooth function fftf the second member on the right- 

hand side of (2.1) (we denote it by 1,) transforms after integration by parts into 

Jf=f(t)-f(O)~ (-+)-~@($-$‘(t-wt (3.3) . . 
0 

The ore m 3.1. Under the mentioned assumptions relative to the operator A and the 

function f(t) the solution of the probfem (1.11, (1.21 is unique. 

Pro o f. First, we obtain by using the representation (2.1) for any solution Ir ($1, u ft. z) 

of the problem fl.l), (1.2) which takes account of (3.2) and (3.31, and by applying the maxi- 
mum principle in the domain ((t, a): 0 < IF < h (t), 0 < 6 < t < to < 2’1, that u (to, ~13 

>fftol - or&, from which in the limits as 6 + 0, there results that 11 (t, zf &f(b) in the do- 

main 52 and therefore, zzX (t, 0) > 0. 

Differentiating (2.1) with respect to x we find that 

*) The case f(0) >-g (01, f ‘ft) >/ 0 reduces to (3.21 by multiplying the “data” of problem 
(1.11, (1.21 by - 1. 
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from which the inequality uX (6, 5) > - c$” follows. According to the maximum princi- 
ple for a function uX (t, 5) continuous in the domain {(t, 5): 0 < z < h (t), 0 < 6 < t < 
< T} which satisfies (1.1). we obtain by taking account of the second c_ondition in (1.2) 

that uX (t, 5) > - ~,6”~ for t > 6; letting 8 tend to 0, we find that in Q\ (0, 0) 

ux (C 5) > 0 (3.4) 
Hence, because of the strengthened maximum principle !4], 

us (6 2) > 0 (3.5) 
at points of the domain 52. 

Now, let us assume that two solutions exist for the problem (l.l), (1.2): h, (t), u 1 (t, z) 
on the segment 10, Ttl and h,(t), u2 (t, r) on the segment [O, T,]. Let 

T = min (T,, T,), m (f) = min [h, (t), h, (t)]andD = {(t, 2): 0 < z < m (t), 0 < t < Tl 

Let us consiher the function w (t, 2) G ~1 (t, z) - ULT (t, z), w (0,O) = 0, in the domain 

5, which satisfies (1.1) in D. By virtue of Theorem 2.1 this function is continuous in 5 and 

w(t, z)+ 0 as t+ 0. 

Let P be the point of the maximum of the function w (t, x) in b’, where w (P) > 0. Since 

w (t, 0) = 0, the point P should lie on the curve z = m (t), i.e., P = (to, m (to)), te E (0, T]. 
According to the known property of the solutions of the heat conduction Eqs. W, (P) > 0 
(let us note that w f const). Therefore, 3 (to) > h, (to), b ecause otherwise, by virtue of the 

second condition in (1.2) for the function 81 and the inequalities (3.4) for the function u 2 : 
wx (PI = q,(P) - u25 TP) = - Uax (P) < 0 

According to the property (2) of the operator A a point t* < to exists for which h, (t*) = 
- h, (t*) and inequality (3.1) is satisfied. Applying the inequality (3.5) for the function 

u1 (t, x) and the inequality (3.1) successively, we have 

w (P) = u1 (to, m (to)) - kl (M < UI (61, h, (&I)) - 82 (6) = & 00) - 82 (to) G 

<gh (t*) - gk (t*) = w (t*, m (P)) 
But this contradicts the selection of the point P as the maximum_ point of the function 

w(t, x) in D. Therefore w(P& 0, which meane that everywhere in D: 

Ul (t, 2) < u, 0, 2) 

Since the functions u1 and u2 may be interchanged born the very beginning of the proof, 
the reverse inequality is also valid. Hence, u = u in D. 

Let us show that then h,(t) 3 h, (t) also in 0, ‘c- ?I . In fact, if the point 6 E [O, T] were 

such that hl (0) < h, (0) say, then according to the second condition in (1.2), z+ (0, hl 
(0)) = 0, and according to (3.5) I+ (0, hl (0)) = uSX (8, hl (.O)) > 0; we have arrived at a 

contradiction. Theorem 3.1 is proved completely. 

Rem ark 3.1. We note that in the proof of the theorem of unicjueness none of the smooth- 

ness of unknown boundaries has been utilized. 

4. Reduction of the problem (l.l), (1.2) to equivalent functional eq- 
uations for an unknown boundary. Let h (t), u (t, x) be the solution of problem 

(l.l), (1.2). Let us represent the function u (t, z) by means of (2.1) and let x tend to h(t) 
therein for fixed t (the foundation for the passage to the limit under the integral is obvious 

here). Utilizing the third condition in (1.2), we find 
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Conversely, let h (t) be a continuous solution of (4.1) for which h ‘(t) exists in the half- 
interval (0, ?‘I and 

Let us show that the function n (6, xl, defined by (2.1), satisfies all the requirements of 
the definition of the solution of the problem (1.1), (1.2). Not evident is only the condition 
uz Ix=h(t) = 0; let us verify it. Let us note that the considered function u (t, xl has con- 
tinuous derivatives .a,, at, uXx in H\ (0,O) and let us apply the integral representation 
for u (t, X) by using the function G (z, $, t,r) mentioned in Section 1 (see 151, Ch. VI, 
Sec. 3) while taking into account that 1 u, (t, z) 1 < c$ik 

t 1 

u(L %) = s G,(r, 0, 4 z)f(%)dz-- s G(z, h(r), t, z)u,(z, h(r)) dz -+ 

Using the fact that the square brackets in the last member equals 

-;&[ID(;;!E)_t4,(;;~)] 

and transforming this member by integration by parts, we obtain a representation for u (t, ~1 
which differs from (2.1) only by the term 

t 

v (t, 2) Es 
s 

G (cc, h(T), t, 7) us (T, h(z)) dz 
II 

which therefore equals zero in a. Utilizing the known property of the heat potentials (see 
[5], Ch. VI, Sec. 41, we find 

0 = lim V, (t, z) = V, (t, fr (t)) - 1,&uz (t, h(t)) (4.2) 
x-d@)-0 

Let us consider the function V (t, ~1 for x >,h (t), 0 6 t .$ T. Since V (8, h (t)) = 0, v (0, 
z)=OforX>Oand)I/(t,x))~2cg, then V (t, z) I 0 by the maximum principle, from which 

it results that 

0 = lim (4.3) 
x-d~(t)fo 

Vx [t, z) = V, [t, h (t)) + */?ux (t, h(t)) 

Comparing (4.2) and (4.31 , we conclude that I.+ lr=+j z~ 0. 
We obtain another functional equation by diffeientiating (2.11 with respect to x and eq- 

uating the derivative 11, (t, Z) to zero for x = h ftf by virtue of the second condition in 
(1.2): 

--g(oq+w = 

Finally, we obtain the third functional equation from (2.1) by equating the functions 
aufdt and dlr/dt = A (h)‘n g’(t) on the desired boundary x = h (t) (here the property is used 
of the jump in the heat potential of a double layer under the assumption of the existence of 
a derivative h’ (‘IT) which is integrable in absolute value with weight (t - ‘IT)-‘~~ in any 
half-interval (0, t]): 
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t 

- 2 s Ge @ (9, h (~1, f, ~1 g’ (+& G-5) 

The proof of the equivalenct of (4.4) and (4.5) to the problem (l.l), (1.2) is exactly the 
same as in the case of (4.1), by direct verification that the function u (8, z), defined by 
(2.1), satisfies all the requirements of the definition of the solution of the problem (1.11, 

(1.2), but, it is true, under some additional a priori assumptions with respect to the solution 

of (4.4) and (4.5). For example, in the case of (4.5) it is sufficient to demand compliance 
with the property (2.5). Then, as is seen from (2.1). a (8) 3 u (8, h ft)) + g (0) as t -+ 0, and 

from the fact that h (t) is a solution of (4.51, there results that the derivatives u’(t) and 

g’(t) coincide; therefore, u (t, h it)) = g ($1 and it is sufficient to carry out the same reason- 
ing as for (4.1). 

The obtained functional equations have substantially different properties and they should 

be applied depending on what information on the solution must be obtained. For example, 

in order to obtain the asymptotic h (t) near t = 0 it is most convenient to use (4.1); for a 
clear operator formulation of the question of solvability of the problem (l.l), (1.2) it is most 

natural to use (4.51, which, as is easily seen from the proof of Theorem 2.1 and the deriva- 

tion of (4.51, is a linear Volterra equation in du /6’t = g’(t) on the boundary x =: h (t), with 

h (t) a given function, for the solution a (t, x) of the following problem: 

(4.6) 
@ I x=0 = f (% Kz I r=h(t) = 0, Fi u (t, h(t)) = eonst = g (0) (4.7) 

Let us turn to applications of the obtained results. 

5. Asymptotic behavior of the unknown boundary x=~(L) near t=O. 
Let us note first that a nonrigorously correct result may be obtained by starting from the 
equality au /dt = du/dt = g’(t) on the boundary z = h (t) as t + 0, which already contains 

the condition U, = 0 for z = h(t), by discarding the whole continuous (regular) part of 
the function a (t, x-1 in the evaluation of au /dt (Theorem 2.1 and Corollary 2.1). 

For a rigorous derivation of the asymptotic behavior we make some natural a priori as- 

sumptions on the “data” of the problem (1.1), (1.2) and the function A (2). 
We shall assume that 

sign [p (0) - f (0)l = -sign g’ (0) # 0 (5.1) 
(from this latter it will be seen that the condition of agreement between the signs of the 
quantities g (0) - j(O) and - g’(0) is a necessary condition for the existence of a solution 

of the problem (1.11, (1.2)). For definiteness in the subsequent computations, we shall con- 
sider that 

g (0) - f (0) > 07 g’ (0) < 0 (5.2) 
With respect to the function h (t) we assume that for a sufficiently small 60 > 0 this 

function is monotonous_and convex upward on the segment 0 f C < I?,, where the function 

w (t) E k (t) / 2y’t tends monotonously to f CL, as t + 0 and 1 O’ (t) 1 = u (t-1 0 
(g)) (the last constraints are in complete agreement with condition (2.5); the assumption on 
O‘ (t) becomes completely justified after the upper bound has been obtained for o (t), 

where its derivation, as will be seen later, does not rely on this assumption; relative to 
this assumption, see also the Remark 5.1 below). Since the function h’(t) may have only a 

countable set of discontinuous points in [f), ho], then without limiting the generality of the 

subsequent reasoning, it can be considered that h’(t) exists everywhere in [O, a,]. 
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By virtue of (5.2) it can be considered that g’(t) < 0 for O,< t.5 8,. 

T h e o r em 5.1. Under the above-mentioned assumptions 

h (Q - 2 fi 00 V) (5.3) 
where m. (t) is a solution of Eq.(*) 

[g (0) - f ((31 o. (t) exp (-40z0(t)) = - vz g’ (0) t (5.4) 

Pro o f. Let us use (4.1). The first member on the right-hand side of this equation (we 

retain the notation Jr for it) is transformed by using the identity f (z) = f (z) - f (0) f f 

=[f(O)+o(1)1[1--(~~)] (5.5) 

We separate the second member in the right-hand side oi(4.1) into two terms J+ f J-, 

where 

Let us note that because of the monotonous behavior of h (t): 

g’ (z) d-c =; tg’ (0) aI (t) [I - @ (o(t))] 

where u1 (t) + 1 as t + 0 (later we denote functions possessing this property by Eli (t)). 
Let us obtain lower and upper bounds for I-. Using the monotonous behavior of o (t), we 

have 

Making the substitution 

we have, furthermore 

= 4g’ (0) us(t) 0 s [I--(O)]edO 
0 

*) It is easy to see that m0 (t) - fin (1 / t) for t + 0; however, the function 2 v/to, (t) 
characterizes the asymptotic h (t) more accurately. 
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By integration by parts we express the last integral in terms of Q (-t oe) = 1 and 
equal to %. Thus 

J- < as (t) g’ (0)t m-* (t) (5.7) 
To derive the lower bound, let us note that by virtue of the convexity of h (t): 

h(t) - h (T_) > h’ (t) 

2JG-F ’ 
TV/t 

and therefore 

Since 

a=h’(t) F/2, x(t) = I/& (t) I/t 

h’ @f = z-w(t) + 2 J&0 (t) @ L; 0 
,‘s ? ( 

$1, 2% ($1 = h’ ftf fi> 2 10 (t) -* 00 

by virtue of the condition ] O’ (t) 1 = o (t-l o (t)) as t + 0, than 
Co 

’ 
! 

[I - CD (a)] d da > g’ (0) tz(a It) 0 (t) (5.8) 
0 

From the estimates (5.6) to (5.8) there results that 

J+ -I- J- = g’ (0) t a7 (t)c0 (t) + 0 (l) [I - rf, (w(t))] 
Substituting (5.5) and (5.9) into (4.11, we have 

fg (0) - f (0) + o (I)1 [2 - CD (0 (WI = - 01~ (t)g’ (0)t o-2 (t) 
Taking into account that as o --, + m: 

1 - Q, (0) - exp (-02) / V&I 
we obtain the confirmation of Theorem 5.1(*) 

(5.9) 

Rem ark 5.1. The condition 10’ (t) 1 = o (t-l@ ft)) is not essential to the Proof of the 
Theorem since the differential inequality 

[g (0) - f ml 0-l exp (-w2) < -g’ (0) as (t) 1/z / (h’(W 
proved above may be used to obtain the lower bound for o (t), however, this requires some 
additional considerations. 

6. Problem of impact of a viacoplastic aod on a rigid obstacle. 
This problem (see [l]) is a particular case of (1.11, (1.2) for 

t 

f(t) = Q, A(h)=i--S\ & r&?(t), s=const>O 
I/ 

0 
where it is natural to take a manifold of continuous functions h (b), h (0) = 0, 0 < h (t) < 1 
for 0 < t ,< 2’ as the set of admissible boundaries (the length of the rod is unity in nondi- 
mensional variables). It is clear from the physical formulation of this problem that its sol- 
ution exists only in the small: h (T) = 0 and u (7’. 0) = 0 for some T > 0. 

Compliance with all the assumptions made in the preceding Sections relative to the data 
of problem (l.l), (1.2), except property (2) of the operator A, is perfectly evident here. Let 
us verify this propert . 

Let ht (t) and & (t) b e some functions from the set of admissible boundaries, where 

h, (to> = hz (41, ( h t ere ore, both these functions are defined and continuotls in [0, to] 1. f 
Let t’ denote the upper bound of those t < to, for which hI (t) = h, (t); evidently the 
set of such t is not empty (since it contains t = 01, and that ht (t*) = h, (t*>. Hy the 
definition of t * the inequality 

*) The following property of the inverse w (z) is taken into account for z =: ~1~‘: 0 (k 2) 
- w (2) as z -+ o for any k > 0. 
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is satisfied for i!* < t < f? 
Taking into account that 8,< hi (t) < 1 and using (G-l), we have 

(6.1) 

&I ? 
gh,(t*)-g”+,,) =s I l_2(Tj >S i i_z(T~ =gh2(t*)-gh2(to) t* t* 

q.e.d. Hence, the considered problem may have just one soIution. 
Let us show that the solution of the problem of rod impact may not exist infinitely long. 

In fact, if the solution u It, xl, h (t) of this problem is defined in the domain (0 f 5 <h 
(0, O<t<+ ~1, h b t en ecause of the obvious inequality u (t, h (t)) < 1 - st the func- 
tion tl (t, h (t)) < 0 for t > l/s, which contradicts the maximum principle (Corollary 2.31, ac- 
cording to which 0 6 II ft, r) Q 1 (we do not consider the physically unreal case h (&) = 1, 
tl > 0 (see [ 11, say)). From this reasoning there also results the upper bound for the seg- 
ment [O, T] of existence of the solution 

T<ils 
In this case the functional Eq. (4.11 is 

Near t = 0 the asymptotic h (tl has the form 

h (t) - 2 J&T coo (t), a0 (t) exp (-4.0~ (t)) = s JG, coo - Tr_ lnt 
Let US obtain the lower bound for h (t) on the whole segment of existence of the solution. 

Taking into account that 

for any nonnegative h (L) and h (t), we have from (6.21 

(6.3) 

There hence results that h (t) > ?,I/to_ (t), where O_ (t) is a solution of Eq. 

or the corresponding differential Eq. 

, a=--- s i/n em MS! 
I-21/to ’ 

o(O)== foe (6.4) 
It is easy to see that the single unbounded solution, as t + 0, of the problem (6.4) is 

the separatrix of this equation, which divides smooth solutions of this equation from soln- 
tions having vertical tangents. It is clear that if ~($1 is some solution of (6.41, which in- 
tersects the r-axis at the point t = Tu, then the bound T > To is valid for T, and any solu- 
tion passing through the w axis will intersect the t-axis (it is easy to show that the separa- 
trix also intersects the taxis). 

As has been remarked above, a point T exists where A (‘f) = 0. Information on the nature 
of the behavior of h (t) near t = T may be obtained directly from the formulation of the prob- 
lem. To do this we. prove the following assertion which is of independent interest. 

L em m a. Let L( (t, z) be the solution of (1.1) in the domain 

Q(0 < in <9, (T - t), fro < t < T; cp (0) = 0, 9, E CD', - T, 01) 
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which is continuous in Q and satisfies the conditions 

+=O= @, J*ag(T--f) = 0 

werL;;(Tv (;/ = o (y’:) as a--t 0. Then a (t, ~1 + 0 as t -V T more rapidly than any po- 

- . 

Pro o f. Let us make the change of variable 

e --r =T-t, y=rjl/T-t 

The domain Q is hence transformed into the domain 

D ((7, y): 0 < y < e+ ’ % fe-*), -ln(T-To)<%<+-4 
and (1.1) goes over into 

L (u) G uyy - l/z yu, - ut = 0 

Let Do = D n {(‘c, y): z > TO}. Let us choose an arbitrary 
the function 

u > 0, and let us consider 

in Do. 
Since for sufficiently large z. the domain De is contained because of the condition 

q (u) = o ( v/a) in some half-strip {O < y d e+o/2 a (e-*0), 7 > z,}, as narrow as desired, 
then for given u a T,, exists in D,, such that : 

L (v) s (-a2 - l/z y a)eeaY < - l/2 a2 

Evidently u (y) > 1 for any a > 0, and vy = a e-‘” > 0 on the right-hand side boun- 
dary I? of the domain I)@. Let us put w I u/v. It is clear that 

In Do the function w (z, y) satisfies Eq. 

wznl+ ( +-+y wv+y-” J L (v) w--w,=0 

where (L (v) / u) < -cr.2 / 4. Applying the maximum principle to the functions 

w*=&w - M, exp I(&S) (z, - z)], where Ma = maxy [ w (~0, Y) 1 

we obtain the estimate 

1 w (Z, y) 1 q M,e(a*‘~)(+~-T~ 
therefore 

-a”+,‘. 
I 24 6, d I < M ta)e 

Hence, the assertion of the Lemma results by virtue of the arbitrariness of a > 0. 
Since II (t. h (tf) - II (T, h(T)) - s (T - t) for any h (t) in the problem of rod impact, the 

order of the contact of the function h (t) to the line t = T may not be less than for some 
second degree parabola. It turns out that the order of contact of h 6) to this line is stronger 

than for any second degee parabola. In fact, making the very same replacement in the op- 
posite case as in the Lemma, and applying an eigenfunction expansion of the problem 

-V -j- ‘I2 y Y; = hY, y (0.) zzz y’ (E) = 0 
to u (2, Y) in the new variables for some I> 0, we arrive at a contradiction to the fact that, 
by virtue of the condition 

t 

u(t,h(t))=i--s & c 
0 

this problem should have the eigenvalues h= n/2, n = 2, 3, 4,..., which cannot be for any 
I, as is easily seen. (For A= nl2 the general solution of the considered ordinary equation 
is expressed in terms of polynomials and Chebyshev-Hermite functions). 

Therefore, for the problem of rod impact (for some regularity conditions on the function 
t = h*(z) - T ). 

- lim h (T -- t) e = $00 
t-T 1/T---t 
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7. Some remarks and particularly extensions. 
R em ark 7.1. More general problems may be considered analogously; problems with 

initial conditions when h (0) = I > 0, and I( (0, zf = au (xl for 0 6 x & 2, uu (I) = g (0); it is 

easy to indicate the conditions on uo (zf for which for example the uniqueness theorem 

would remain valid. However, for the existence theorem to be valid some conditions on the 

consistency between a,, (x1 and the operator A are certainly necessary. For example, as has 

been shown in [6], the formulation of the rod impact problem will be contradicted if 1> 0 

and tcu (xl 3 1 (it is enough to compare the order of smallness of 1 - u (t, xo 1, uo < Z and 
1 - u (t, h (tf) as t + 0 by using the conditions nX >,O, u (t, x) 4 If. 

Remark 7.2. The results obtained may be extended to the case of some parabolic eq- 

uations with variable coefficients. 

Rem ark 7.3. Questions of reducing problems with unknown boundaries to functional 

equations are considered in (71. 
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